Shangbin photo

Shangbin Feng

PhD student at University of Washington, working with Yulia Tsvetkov. Multi-LLM collaboration, social NLP, networks and structures.

Links:   CV   Email   Twitter   Github   Google Scholar   Semantic Scholar


Publications

Filter:   Hall of Fame 🏆   Lead/co-Lead ✍️   All Papers 📖  

2024

Multilingual AbstainQA Teaser

Teaching LLMs to Abstain across Languages via Multilingual Feedback

Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, Orevaoghene Ahia, Shuyue Stella Li, Vidhisha Balachandran, Sunayana Sitaram, Yulia Tsvetkov

EMNLP 2024   paper   code  

We propose to explore LLM abstention in multilingual contexts: to bridge the gap for low-resource languages, we propose to sample diverse feedback from related languages for better AbstainQA.

Modular Pluralism Teaser

Modular Pluralism: Pluralistic Alignment via Multi-LLM Collaboration

Shangbin Feng, Taylor Sorensen, Yuhan Liu, Jillian Fisher, Chan Young Park, Yejin Choi, Yulia Tsvetkov

EMNLP 2024   paper   code  

We propose to advance pluralistic alignment through multi-LLM collaboration: a large general-purpose LLM interacts with a pool of smaller but specialized community LMs for better pluralism.

Graph Pattern Teaser

Can LLM Graph Reasoning Generalize beyond Pattern Memorization?

Yizhuo Zhang=, Heng Wang=, Shangbin Feng=, Zhaoxuan Tan, Xiaochuang Han, Tianxing He, Yulia Tsvetkov

EMNLP 2024, findings   paper   code  

While instruction tuning produces promising graph LLMs, can they generalize beyond patterns in the training data? Mostly no, especially from synthetic to real-world problems, while we explore preliminary solutions.

Knowledge Conflict Teaser

Resolving Knowledge Conflicts in Large Language Models

Yike Wang=, Shangbin Feng=, Heng Wang, Weijia Shi, Vidhisha Balachandran, Tianxing He, Yulia Tsvetkov

COLM 2024   paper   code  

We propose a protocol for resolving knowledge conflicts in LLMs: rather than solely relying on either parametric or non-parametric knowledge, LLMs should identify conflict existence, localize conflicting information segments, and provide both-sided answers.

AbstainQA Teaser

Don't Hallucinate, Abstain: Identifying LLM Knowledge Gaps via Multi-LLM Collaboration

Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, Vidhisha Balachandran, Yulia Tsvetkov

ACL 2024   🏆 Area Chair Award, QA Track   🏆 Outstanding Paper Award   paper   code  

We benchmark LLM abstention with calibration-, training-, prompting-, and consistency-based approaches. Informed by their weaknesses, we propose collaboration-based approaches, where multiple LLMs work in cooperation or competition to identify the knowledge gaps in each other and produce abstain decisions.

What does the bot say? Teaser

What Does the Bot Say? Opportunities and Risks of Large Language Models in Social Media Bot Detection

Shangbin Feng, Herun Wan, Ningnan Wang, Zhaoxuan Tan, Minnan Luo, Yulia Tsvetkov

ACL 2024   paper   code  

We propose to explore the opportunities and risks of LLMs in social media bot detection. We find that LLMs with instruction tuning could become state-of-the-art bot detectors with as few as 1000 labeled examples, while LLM-designed bots could significantly harm the performance and calibration of existing bot detectors.

Knowledge Crosswords Teaser

Knowledge Crosswords: Geometric Reasoning over Structured Knowledge with Large Language Models

Wenxuan Ding=, Shangbin Feng=, Yuhan Liu, Zhaoxuan Tan, Vidhisha Balachandran, Tianxing He, Yulia Tsvetkov

ACL 2024, findings   paper   code  

We propose Knowledge Crosswords, a benchmark focusing on evaluating LLMs' abilities for geometric knowledge reasoning.

DELL Teaser

DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection

Herun Wan=, Shangbin Feng=, Zhaoxuan Tan, Heng Wang, Yulia Tsvetkov, Minnan Luo

ACL 2024, findings   paper   code  

We propose DELL to integrate LLMs as part of the pipeline in graph-based misinformation detection through 1) generating diverse news comments, 2) generating explanations for proxy tasks, and 3) merging specialized experts and predictions.

P3Sum Teaser

P^3SUM: Preserving Author's Perspective in News Summarization with Diffusion Language Models

Yuhan Liu=, Shangbin Feng=, Xiaochuang Han, Vidhisha Balachandran, Chan Young Park, Sachin Kumar, Yulia Tsvetkov

NAACL 2024   paper   code  

We make the case for preserving author perspectives in news summarization: while existing approaches alter the political stances of news articles, our proposed P3Sum preserves author stances by employing diffusion models and controllable text generation.

KGQuiz Teaser

KGQUIZ: Evaluating the Generalization of Encoded Knowledge in Large Language Models

Yuyang Bai=, Shangbin Feng=, Vidhisha Balachandran, Zhaoxuan Tan, Shiqi Lou, Tianxing He, Yulia Tsvetkov

WebConf 2024, oral   paper   code  

We propose KGQuiz, a knowledge-intensive benchmark to evaluate the generalizability of LLM knowledge abilities across knowledge domains and progressively complex task formats.

CooK Teaser

Knowledge Card: Filling LLMs' Knowledge Gaps with Plug-in Specialized Language Models

Shangbin Feng, Weijia Shi, Yuyang Bai, Vidhisha Balachandran, Tianxing He, Yulia Tsvetkov

ICLR 2024, oral   paper   code  

We propose Knowledge Card, a community-driven initiative to empower black-box LLMs with modular and collaborative knowledge. By incorporating the outputs of independently trained, small, and specialized LMs, we make LLMs better knowledge models by empowering them with temporal knowledge update, multi-domain knowledge synthesis, and continued improvement through collective efforts.

2023

FactKB Teaser

FactKB: Generalizable Factuality Evaluation using Language Models Enhanced with Factual Knowledge

Shangbin Feng, Vidhisha Balachandran, Yuyang Bai, Yulia Tsvetkov

EMNLP 2023   paper   demo   code  

We propose a simple, easy-to-use, shenanigan-free summarization factuality evaluation model by augmenting language models with factual knowledge from knowledge bases.

BotPercent Teaser

BotPercent: Estimating Bot Populations in Twitter Communities

Zhaoxuan Tan=, Shangbin Feng=, Melanie Sclar, Herun Wan, Minnan Luo, Yejin Choi, Yulia Tsvetkov

EMNLP 2023, findings   paper   code  

We make the case for community-level bot detection, proposing the system BotPercent to estimate the bot populations from groups to crowds. Armed with BotPercent, we investigate the overall bot percentage among active users, bot precense in the Trump reinstatement vote, and more, yielding numerous interesting findings with implications for social media moderation.

NLGraph Teaser

Can Language Models Solve Graph Problems in Natural Language?

Heng Wang=, Shangbin Feng=, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, Yulia Tsvetkov

NeurIPS 2023, spotlight   paper   code  

Are language models graph reasoners? We propose the NLGraph benchmark, a test bed for graph-based reasoning designed for language models in natural language. We find that LLMs are preliminary graph thinkers while the most advanced graph reasoning tasks remain an open research question.

PoliLean Teaser

From Pretraining Data to Language Models to Downstream Tasks: Tracking the Trails of Political Biases Leading to Unfair NLP Models

Shangbin Feng, Chan Young Park, Yuhan Liu, Yulia Tsvetkov

ACL 2023   🏆 Best Paper Award   paper   code   Washington Post   MIT Tech Review   Montreal AI Ethics Institute   Better Conflict Bulletin  

We propose to study the political bias propagation pipeline from pretraining data to language models to downstream tasks. We find that language models do have political biases, such biases are in part picked up from pretraining corpora, and they could result in fairness issues in LM-based solutions to downstream tasks.

KALM Teaser

KALM: Knowledge-Aware Integration of Local, Document, and Global Contexts for Long Document Understanding

Shangbin Feng, Zhaoxuan Tan, Wenqian Zhang, Zhenyu Lei, Yulia Tsvetkov

ACL 2023   paper   code  

We propose KALM, a Knowledge-Aware Language Model that jointly incorporates external knowledge in three levels of document contexts: local, document-level and global.

2022

PAR Teaser

PAR: Political Actor Representation Learning with Social Context and Expert Knowledge

Shangbin Feng, Zhaoxuan Tan, Zilong Chen, Ningnan Wang, Peisheng Yu, Qinghua Zheng, Minnan Luo

EMNLP 2022   paper   code   poster  

We propose to learn representations of polical actors with social context and expert knowlegde, while applying learned representations to tasks in computational political science.

TwiBot-22 Teaser

TwiBot-22: Towards Graph-Based Twitter Bot Detection

Shangbin Feng=, Zhaoxuan Tan=, Herun Wan=, Ningnan Wang=, Zilong Chen=, Binchi Zhang=, Qinghua Zheng, Wenqian Zhang, Zhenyu Lei, Shujie Yang, Xinshun Feng, Qingyue Zhang, Hongrui Wang, Yuhan Liu, Yuyang Bai, Heng Wang, Zijian Cai, Yanbo Wang, Lijing Zheng, Zihan Ma, Jundong Li, Minnan Luo

NeurIPS 2022, Datasets and Benchmarks Track   website   paper   code   poster  

We make the case for graph-based Twitter bot detection and propose a graph-based benchmark TwiBot-22, which addresses the issues of limited dataset scale, incomplete graph structure, and low annotation quality in previous datasets.

KCD Teaser

KCD: Knowledge Walks and Textual Cues Enhanced Political Perspective Detection in News Media

Wenqian Zhang=, Shangbin Feng=, Zilong Chen=, Zhenyu Lei, Jundong Li, Minnan Luo (* indicates equal contribution)

NAACL 2022, oral presentation   paper   code  

We introduce the mechanism of knowledge walks to enable multi-hop reasoning on knowledge graphs and levearge textual labels in graphs for political perspective detection.

HeteroBot Teaser

Heterogeneity-aware Twitter Bot Detection with Relational Graph Transformers

Shangbin Feng, Zhaoxuan Tan, Rui Li, Minnan Luo

AAAI 2022   paper   code   poster

We introduce relational graph transformers to model relation and influence heterogeneities on Twitter for heterogeneity-aware Twitter bot detection.

2021

PPD Teaser

KGAP: Knowledge Graph Augmented Political Perspective Detection in News Media

Shangbin Feng=, Zilong Chen=, Wenqian Zhang=, Qingyao Li, Qinghua Zheng, Xiaojun Chang, Minnan Luo (* indicates equal contribution)

arxiv 2021   paper   code  

We construct a political knowledge graph and propose a graph-based approach for knowledge-aware political perspective detection.

BotRGCN Teaser

BotRGCN: Twitter Bot Detection with Relational Graph Convolutional Networks

Shangbin Feng, Herun Wan, Ningnan Wang, Minnan Luo

ASONAM 2021 Short   paper   code  

We propose a graph-based approach for Twitter bot detection with relational graph convolutional networks and four aspects of user information.

TwiBot-20 Teaser

TwiBot-20: A Comprehensive Twitter Bot Detection Benchmark

Shangbin Feng, Herun Wan, Ningnan Wang, Jundong Li, Minnan Luo

CIKM 2021, Resource Track   paper   code   poster

We propose a (the first) comprehensive Twitter bot detection benchmark that covers diversified users and supports graph-based approaches.

SATAR Teaser

SATAR: A Self-supervised Approach to Twitter Account Representation Learning and its Application in Bot Detection

Shangbin Feng, Herun Wan, Ningnan Wang, Jundong Li, Minnan Luo

CIKM 2021, Applied Track   paper   code   poster

We propose to pre-train Twitter user representations with follower count and fine-tune on Twitter bot detection.


Miscellaneous